A primal-dual dynamical approach to structured convex minimization problems
نویسندگان
چکیده
منابع مشابه
Canonical Primal-Dual Method for Solving Non-convex Minimization Problems
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...
متن کاملA Primal-Dual Algorithmic Framework for Constrained Convex Minimization
We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov’s excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual...
متن کاملPrimal-dual subgradient methods for convex problems
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. T...
متن کاملInertial Primal-dual Algorithms for Structured Convex Optimization
The primal-dual algorithm recently proposed by Chambolle & Pock (abbreviated as CPA) for structured convex optimization is very efficient and popular. It was shown by Chambolle & Pock in [16] and also by Shefi & Teboulle in [49] that CPA and variants are closely related to preconditioned versions of the popular alternating direction method of multipliers (abbreviated as ADM). In this paper, we ...
متن کاملCoupled-decompositions: exploiting primal-dual interactions in convex optimization problems
Decomposition techniques implement the so-called “divide and conquer” in convex optimization problems, being primal and dual decompositions the two classical approaches. Although both solutions achieve the goal of splitting the original program into several smaller problems (called the subproblems), these techniques exhibit in general slow speed of convergence. This is a limiting factor in prac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2020
ISSN: 0022-0396
DOI: 10.1016/j.jde.2020.07.039